MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis.
نویسندگان
چکیده
In Bacillus subtilis, FtsZ ring formation and cell division is favoured at the midcell because the inhibitor proteins MinC and MinD are indirectly restricted to the cell poles by the protein DivIVA. Here we identify MinJ, a topological determinant of medial FtsZ positioning that acts as an intermediary between DivIVA and MinD. Due to unrestricted MinD activity, cells mutated for minJ exhibited pleiotropic defects in homologous recombination, swarming motility and cell division. MinJ restricted MinD activity by localizing MinD to the cell poles through direct protein-protein interaction. MinJ itself localized to cell poles in a manner that was dependent on DivIVA. MinJ is conserved in other low G+C Gram-positive bacteria and may be an important component of cell division site selection in these organisms.
منابع مشابه
Imaging DivIVA dynamics using photo-convertible and activatable fluorophores in Bacillus subtilis
Most rod-shape model organisms such as Escherichia coli or Bacillus subtilis utilize two inhibitory systems for correct positioning of the cell division apparatus. While the nucleoid occlusion system acts in vicinity of the nucleoid, the Min system was thought to protect the cell poles from futile division leading to DNA-free miniature cells. The Min system is composed of an inhibitory protein,...
متن کاملInteraction of the Morphogenic Protein RodZ with the Bacillus subtilis Min System
Vegetative cell division in Bacillus subtilis takes place precisely at the middle of the cell to ensure that two viable daughter cells are formed. The first event in cell division is the positioning of the FtsZ Z-ring at the correct site. This is controlled by the coordinated action of both negative and positive regulators. The existence of positive regulators has been inferred, but none have p...
متن کاملThe MinCDJ System in Bacillus subtilis Prevents Minicell Formation by Promoting Divisome Disassembly
BACKGROUND Cell division in Bacillus subtilis takes place precisely at midcell, through the action of Noc, which prevents division from occurring over the nucleoids, and the Min system, which prevents cell division from taking place at the poles. Originally it was thought that the Min system acts directly on FtsZ, preventing the formation of a Z-ring and, therefore, the formation of a complete ...
متن کاملCellular Architecture Mediates DivIVA Ultrastructure and Regulates Min Activity in Bacillus subtilis
UNLABELLED The assembly of the cell division machinery at midcell is a critical step of cytokinesis. Many rod-shaped bacteria position septa using nucleoid occlusion, which prevents division over the chromosome, and the Min system, which prevents division near the poles. Here we examined the in vivo assembly of the Bacillus subtilis MinCD targeting proteins DivIVA, a peripheral membrane protein...
متن کاملComplex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of Bacillus subtilis
Chromosome segregation is an essential process of cell multiplication. In prokaryotes, segregation starts with the newly replicated sister origins of replication, oriCs, which move apart to defined positions in the cell. We have developed a genetic screen to identify mutants defective in placement of oriC during spore development in the Gram-positive bacterium Bacillus subtilis. In addition to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular microbiology
دوره 70 5 شماره
صفحات -
تاریخ انتشار 2008